
Initial Study of Honey Adulteration by Sugar Solutions Using
Midinfrared (MIR) Spectroscopy and Chemometrics

J. F. DANIEL KELLY,† GERARD DOWNEY,*,† AND VANESSA FOURATIER‡

Teagasc, The National Food Centre, Ashtown, Dublin 15, Ireland, and
Analytical Chemistry Department, INA-PG, 16 Rue Claude Bernard, Paris, France

Fourier transform infrared (FTIR) spectroscopy and attenuated total reflection (ATR) sampling have
been used to detect adulteration of honey samples. The sample set comprised 320 spectra of authentic
(n ) 99) and adulterated (n ) 221) honeys. Adulterants used were solutions containing both D-fructose
and D-glucose prepared in the following respective weight ratios: 0.7:1.0, 1.2:1.0 (typical of honey
composition), and 2.3:1.0. Each adulterant solution was added to individual honeys at levels of 7,
14, and 21% w/w. Spectral data were compressed and analyzed using k-nearest neighbors (kNN)
and partial least squares (PLS) regression techniques. A number of data pretreatments were explored.
Best classification models were achieved with PLS regression on first derivative spectra giving an
overall correct classification rate of 93%, with 99% of samples adulterated at levels of 14% w/w or
greater correctly identified. This method shows promise as a rapid screening technique for detection
of this type of honey adulteration.
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INTRODUCTION

Many foods and food ingredients have the potential to be
adulterated. Those that are expensive (e.g., vanilla, extra virgin
olive oil) (1, 2) and those whose composition or yield may vary
as a result of fluctuations in weather during growth and harvest
seasons (e.g., coffee, oranges) (3-5) may be particularly
susceptible to this practice. Economic adulteration, i.e., the
extension of a food or food ingredient by a cheaper and inferior
product or component, is of considerable concern to food
manufacturers, regulatory agencies, and consumers alike. Honey
is highly prized by consumers as a natural sweet substance. It
is defined as “the natural sweet substance produced by
honeybees from the nectar of plants or from secretions of living
parts of plants or excretions of plant sucking insects on the living
parts of plants, which the bees collect, transform by combining
with specific substances of their own, deposit, dehydrate, store,
and leave in the honeycomb to ripen and mature” (6). While
demand for honey is increasing, production is in decline for a
variety of socioeconomic factors. Extension of honey by addition
of other sweet substances such as sugars or industrial syrups at
some stage during production or processing could be an
attractive means of economic adulteration. Identifying this type
of adulteration is important for financial reasons. Many different
analytical techniques are employed in authenticity testing of
honey. Among them are NMR spectroscopy (7), HPLC (8, 9),
GC (10), and carbon isotope ratio analysis (11, 12). These

techniques, while reported to be successful, are costly and
require considerable analytical skill. With the exception of NMR
spectroscopy, these techniques are also time-consuming and will
destroy samples under test. A need therefore exists for a rapid,
nondestructive, and less expensive method suitable at least for
screening honey samples for authenticity confirmation.

Vibrational spectroscopic methods (near and MIR) have
previously been applied to a range of authenticity problems (1,
3, 13-17). In combination with multivariate data analysis, they
possess the speed, simplicity, and low cost per analysis required
for screening techniques. MIR spectroscopy (2500-25 000 nm)
may have particular benefits since it contains more spectral
information than its NIR counterpart and the fundamental
vibrational absorption bands in the MIR are better resolved than
the broad overtone and combination absorption bands which
arise in the NIR spectral region (750-2500 nm). The availability
of ATR crystals simplifies sample handling in the MIR region.

Previous reports have described the use of these vibrational
spectroscopic techniques to determine the chemical composition
of honey samples (18-21) and also for detecting added sugar
or syrups in honey (22-25). However, the experimental design
used in the latter reports facilitated classification on the basis
of alteration of the solids content of the honey or by adulteration
with syrups possessing a very different chemical composition
to that of honey. The work presented in this paper investigates
the potential of MIR spectroscopy to identify honey samples
adulterated with fructose:glucose solutions that have very similar
sugar profiles to honey. Additionally, both the honey samples
and the adulterant solutions were adjusted to a standard solids
(°Brix) level.
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MATERIALS AND METHODS

Samples.Authentic honey samples were gathered from artisanal
beekeepers throughout the island of Ireland. Samples were not
independently tested for authenticity as each honey sample was collected
directly from the apiarists.D-Fructose andD-glucose (Analar Grade)
were obtained from Merck. Aqueous solutions were prepared using
distilled water and containing fructose and glucose in the following
(F:G) ratios by weight: 0.7:1.0, 1.2:1.0, and 2.3:1.0. Each adulterant
sugar solution and all of the honey samples were diluted with distilled
water to 70° Brix. Twenty-five authentic honey samples were adulter-
ated at levels of 7, 14, and 21% w/w using each of the adulterant
solutions. A further 74 honey samples were added to augment the
authentic sample database, producing 99 authentic samples and 225
adulterated samples. It was necessary to remove four outlier samples
from the adulterated spectral data set due to the presence of spikes in
the spectra caused by electrical interference during data collection of
these samples. Therefore, 221 adulterated sample spectra were used
for analysis. Prior to spectral collection, samples were placed in an
oven overnight at 40°C to dissolve any crystalline material present
and stirred manually to produce a homogeneous solution.

Instrumentation. Solids content in honeys and adulterated solutions
was measured by refractometry using an Abbé model 2WA benchtop
refractometer. MIR spectra were collected at room temperature on a
BIO-RAD Excalibur series FTS 3000 spectrometer (Analytica ltd.,
Dublin, Ireland); instrument control and spectral collection were
performed using WIN-IR Pro (v 3.0) software supplied by the
equipment manufacturer. Spectra were recorded on an in-compartment
benchmark ATR trough top plate using a 45° ZnSe crystal with 11
internal reflections. Sixty-four scans were coadded at a nominal
resolution of 4 cm-1. Single beam spectra of the samples were collected
and ratioed against a background of air. Spectra were truncated to the
useful range of the ZnSe ATR crystal (800-4000 cm-1) and then
converted to a wavelength scale using the supplied Win-IR Pro software.
Samples were applied to the ATR crystal to obtain a maximum
absorption of approximately 1.0; this was achieved by variation of the
crystal coverage by samples. This was carried out to avoid any
nonlinearity in the spectral set, which can occur if the path length varies
greatly from sample to sample. It also prevented saturation of the signal,
which occurs around 1150 nm when the entire area of the crystal is
covered by the test solution. The crystal was cleaned between samples
with tepid water and dried with lens-cleaning tissue. The spectral
baseline recorded by the spectrometer was examined visually to ensure
that no residue from the previous sample was retained on the crystal.
All spectra were recorded at room temperature between 20 and 25°C.
Duplicate spectra of each solution were collected using separate
subsamples.

Data Processing.The means of duplicate spectra were used for
statistical analysis. Spectra were exported from WIN-IR Pro as GRAMS
files (ThermoGalactic, Salem, NH) and imported directly into The
Unscrambler (v7.6; CAMO ASA, Norway) or Pirouette (v3.10;
Infometrix Inc., WA). Models were developed using the spectral region
between 6800 and 11 500 nm, which is dominated by information on
the sugar composition (26, 27). Normalization of the spectra was carried
out prior to analysis according to the equation below, where X(i,k) is
the absorbance value for samplei at wavelengthk.

This was performed to remove variance caused by small changes in
the path length between samples. Calibrations were developed and
evaluated on separate calibration and prediction sample sets. Samples
were assigned to these sets based on their position in the spectral file.
All odd-numbered samples were assigned to the calibration sample set
and all even-numbered samples to the prediction sample set. PLS
regression onto a dummy variable was used for discrimination of the
authentic and adulterated samples. The dummy variable was assigned
a value of-1 for an authentic honey sample and+1 for all other
samples. For quantitative analysis, they variable was assigned a value
of 0 for an authentic sample,+7 for samples adulterated at a level of
7% w/w, +14 for 14%, and+21 for 21% adulteration level. Data
pretreatments examined were first and second derivative spectral data

using the Savitsky-Golay method and segment sizes of 13 points (157
nm) and 25 points (352 nm), respectively. Full cross-validation and
variable weightings of 1/standard deviation were used in model
development. In all cases, only optimal models are discussed in this
paper. These models were then used to classify the prediction sample
set. Cutoff points were arbitrarily chosen at 0 and 7 for the discrimina-
tion and quantitative predictions, respectively.

Classification was also attempted by the kNN method using Pirouette
software. This supervised classification method identifies an unknown
sample on the basis of the identity of a predefined number of
neighboring samples of known sample types modeled in the calibration
development step. The technique is based on the assumption that the
closer the samples lie in measurement space, the more likely they belong
to the same category. One selects the k nearest samples from the
calibration set to the unknown and applies a majority rule: the unknown
is classified in the group to which the majority of k neighbors belong.
The choice of k is determined by optimization. kNN is well-suited to
data sets with small sample numbers and can function even with only
one calibration set sample per category. It is sensitive to gross
inequalities in the number of samples in each class. Calibration and
prediction sample sets were the same as those used in PLS analyses.
Samples were classified by three different approaches. First, into two
groups, honey vs nonhoney, similar to the discrimination dummy
variable in PLS. Second, into four groups classified on the basis of
adulterant level; this approach is similar to the quantitative PLS analysis.
Finally, into four classes grouped according to the adulterant solution
used. In each case, all data pretreatments examined for PLS regression
analysis were also used for kNN analysis. All of the above procedures
for both PLS and kNN analysis were repeated with the calibration and
prediction sample sets inverted, i.e., all even-numbered samples being
assigned to a calibration sample set and all odd-numbered samples used
as the prediction sample set.

RESULTS AND DISCUSSION

The average ATR spectrum of all of the authentic honey
samples together with spectra of the three adulterant solutions
are shown inFigure 1. Obvious differences are observed for
adulterant solutions with either a high or a low F:G ratio. The
main differences involve an increase in band absorption around
8450 and 9490 nm (F maximum∼ 9490 nm) and a lowering
of absorption intensity between 9800 and 10 200 nm (glucose
maximum∼ 9820 nm) for samples with a high F:G ratio. The
opposite is observed for samples with a lower F:G ratio.
However, as the spectral variations in honey samples can also
be quite large (Figure 2), identification of authentic samples
by visual analysis of test sample spectra is impossible. Chemo-
metric techniques are therefore necessary to discriminate
between authentic and adulterated samples.

XN(i,k) ) X(i,k)/Abs{mean X(i,*)}

Figure 1. Average ATR spectra of unadulterated honeys and adulterant
solutions (all adjusted to 70° Brix).
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The MIR spectrum of honey is dominated by sugar absorp-
tions. The bands appearing between 6800 and 8700 nm are due
to bending modes of C-C-H, C-O-H, and O-C-H groups
(26). The more intense peaks in the region around 8700-11 000
nm arise mainly from C-O and C-C stretching modes (26),
with a peak around 9400-9800 nm due to O-H vibrations (27).
At longer wavelengths, bands due to C-H and O-H bending
vibrations are also useful for discrimination and quantification
purposes. Given the differences observed between the spectra
of the major components of honey (fructose, glucose, and
sucrose), it is not surprising that MIR spectroscopy can be used
for accurate determination of the sugar composition of mixtures
and syrups (28-30). However, it should also be noted that peak
intensity and position for sugar solutions can vary dramatically
with concentration. Spectra of aqueous solutions of fructose from
30 to 90% w/w were recorded, and the contribution from water
was removed, thus leaving the absorbance due to the fructose
molecules only. This was done by normalizing the spectra at
the maximum of the water band at 6111 nm to a value of 1.0
and subtracting a similarly normalized spectrum of water. These
modified spectra were then normalized over the range displayed
in Figure 3. These spectra show a shift to longer wavelengths
and a broadening of the absorption bands as the concentration
of fructose is increased. Similar results were observed for
glucose solutions and mixtures of fructose and glucose. To

remove these complications arising from concentration effects,
all samples were diluted to a constant°Brix value prior to
analysis.

PLS. A summary of the results obtained using PLS regression
to discriminate between authentic and adulterated honey samples
is shown inTable 1. Results for prediction on the odd-numbered
data set using the even-numbered data set for calibration are
shown first followed by the results for prediction on the even-
numbered data set using the odd-numbered data set for
calibration. Both of these results were then combined and are
labeled averaged values. Only small differences are observed
for normalized, first, and second derivative data. An overall
correct classification of 93.7, 93.7, and 91.8% was achieved
with normalized, first derivative, and second derivative data,
respectively. As further preprocessing of the data does not
improve the results, normalized data is the preferred pretreatment
in this case. Using this model, approximately 88% of the
authentic honey samples and more than 96% of the adulterated
honey samples are classified correctly. The vast majority of the
misclassified samples belonged to the set, which were adulter-
ated at the lowest level (i.e., 7%); more than 99% of samples
adulterated at levels of over 7% are classified correctly.

The ability of discriminant PLS to differentiate between
authentic honey samples and adulterated honey samples is
compromised by the variability in the adulterated sample sets,
i.e., three different levels of adulteration using three different
adulterant solution compositions. To reduce this variability, PLS
regression was carried out using the level of adulteration (0, 7,
14, and 21%) as they variable.

The results of this analysis are shown inTable 2. Overall,
correct classification levels of 91.8, 92.8, and 92.5% were
achieved with normalized, first derivative, and second derivative
data, respectively. The preferred preprocessing in this case is
for first derivative data. Almost 93% of both authentic honey
samples and adulterated honey samples were predicted correctly.
The largest portion of misclassifications arose from samples
adulterated at the lowest level of adulteration. This classical
application of PLS permits the prediction of adulterant content
with a standard error of∼4.75% (Table 2). The 95% confidence
limit for this model is approximately 9.5% (∼2 × SEP).
Therefore, this model will not be able to predict adulteration

Figure 2. Individual ATR spectra of selected honey samples (adjusted to
70° Brix).

Figure 3. ATR spectra of aqueous solutions containing 30−90% w/w of
fructose. A correction for water absorption was applied for comparison
purposes.

Table 1. Percentage Correct Classification of Prediction Sample Sets
Using Discriminant PLS Regression

data pretreatment

sample groups
normalized

only
normalized

1st derivative
normalized

2nd derivative

odd-numbered data seta
adulterated honey 96.4 95.5 93.6
unadulterated honey 84.0 84.0 86.0
loadings 5 4 4

even-numbered data setb
adulterated honey 96.4 95.5 92.7
unadulterated honey 91.8 95.9 91.8
loadings 5 6 6

averaged values
adulterated at 7% 90.4 89.0 84.9
adulterated at 14% 98.6 97.2 94.4
adulterated at 21% 100 100 100
adulterated honey 96.4 95.5 93.2
unadulterated honey 87.9 89.9 88.9
all samples 93.7 93.7 91.8

a Calibration models developed on even-numbered data set. b Calibration models
developed on odd-numbered data set.
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accurately at levels below this value and hence the misclassi-
fication of many samples adulterated at levels of 7%.

The results by both discriminant and quantitative PLS analysis
techniques give similar results. The major difference observed
is the compromise between the number of false positive and
false negative results, which are related to the choice of cutoff
point. Therefore, both techniques appear to discriminate based
only on dilution of all of the minor components in honey that
are absent in all of the adulterant solutions. This is further
recognized through an examination of the loading plots.

Graphical illustrations of the first two loadings developed in
the quantitative PLS model using first derivative data are shown
in Figure 4. First derivative spectra of fructose and glucose
(70° Brix) are shown inFigure 5. A loading can be calculated
from these spectra to describe the difference in fructose and
glucose concentration by subtracting the first derivative spectrum
of glucose from that of fructose and dividing each variable in
the resulting difference spectrum by the weighting used during
development of the model (i.e., the standard deviation of each
variable in the calibration sample set). This calculated loading
describing the difference between fructose and glucose is shown

in Figure 6. The second loading from the model is overlaid in
the same figure. Loadings 1 and 2 account for 24 and 33% of
the variation in the spectral data and 57 and 4% of they data
(adulterant concentration), respectively. It is evident from an
examination ofFigure 6 that the variation in the spectral data
being described by this second loading is due to the variation
in the fructose and glucose concentrations. The largest portion
of the spectral variation (33%) described by this loading
accounted for a very small part of the classification (4%).
Therefore, the regression model is unable to use this variation
in the spectral data to the benefit of the prediction results. The
first loading is likely to be related to absorptions of sucrose,
maltose, and higher sugars that are present in honey but absent
from the adulterant solutions.

Although this classical PLS analysis can take into account
variations in the level of adulteration in the adulteration sample
set, there is no information in they variable relating to the
adulterant solution composition. We can remove the complica-
tion in the adulterant sample set by using only samples
adulterated with one of the three adulterant solutions and the
authentic honey sample in the calibration. A classical PLS
regression was carried out for each of the three adulterant
solutions (F/G) 0.7, 1.2, 2.3) with the authentic honey samples,
using normalized first derivative data and the level of adultera-
tion as they variable as before. A regression plot is shown for
each of the three calibrations inFigures 7-9. The SEP for the

Table 2. Percentage Correct Classification of Prediction Sample Sets
Using Quantitative PLS Regression

data pretreatment

sample groups
normalized

only
normalized

1st derivative
normalized

2nd derivative

odd-numbered data seta
adulterated honey 91.8 92.7 94.5
unadulterated honey 88.0 88.0 88.0
SEP (%) 4.8 4.8 4.7
loadings 6 4 6

even-numbered data setb
adulterated honey 91.8 92.7 90.9
unadulterated honey 95.9 98.0 95.9
SEP (%) 4.4 4.7 4.6
loadings 11 4 6

averaged values
adulterated at 7% 78.1 79.5 82.2
adulterated at 14% 97.2 98.6 95.8
adulterated at 21% 100 100 100
adulterated honey 91.8 92.7 92.7
unadulterated honey 91.9 92.9 92.0
all samples 91.8 92.8 92.5

a Calibration models developed on even-numbered data set. b Calibration models
developed on odd-numbered data set.

Figure 4. Loadings 1 and 2 of the quantitative PLS regression model
using first derivative spectra of honey and adulterated solutions.

Figure 5. First derivative ATR spectra of glucose and fructose (70° Brix).

Figure 6. Comparison of the calculated loading describing differences
between glucose and fructose and the second loading used in the
quantitative PLS regression model.
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calibration using authentic honey samples and samples adulter-
ated with the adulterant solution with a F:G ratio of 0.7:1.0 is
3.2%. A 95% confidence level (i.e.,∼2 × SEP) is observed at
a level of adulteration of 6.4%. For adulterant solutions with
F:G ratio of 1.2:1.0, the limit for 95% confidence is 8.6% (2×
4.3), and for the adulterant with a F:G ratio of 2.3:1.0, a value
of 4.9% (2× 2.44) is observed. These 95% confidence limits
(6.4, 8.6, and 4.9%) compare favorably to the value of 9.5%

(2 × 4.75, Table 2) obtained when samples from all three
adulterant solutions were used in the calibration. The improve-
ment in the calibrations is due to the ability of the model to use
the variation in the fructose and glucose concentrations to
separate the sets. As is expected, the smallest improvement is
observed for the adulterant solution with a F:G ratio closest to
that of honey (1.2). However, knowledge of the adulterant can
lead to a much improved regression model.

kNN. The application of kNN to this data set was used to
try and overcome the problems encountered with PLS and to
use more of the information in the spectra related to the
concentration of fructose and glucose in the classification
procedure. As kNN attempts to categorize samples based on
proximity, it should be sensitive to this variation. Three
prediction approaches were attempted. First, to classify accord-
ing to honey vs nonhoney samples; second, to classify according
to the level of adulteration (which can therefore assign a quantity
to the adulteration); and finally, to classify according to the
adulterant solution used. This final classification could therefore
be used to identify an adulterant. The results of each prediction
are shown inTables 3-5. The best results were obtained using
two classes (honey vs nonhoney) with first derivative spectra.
This is not surprising as in the other two methods votes for the
adulterated samples were divided into three thus increasing the
competitiveness of the authentic sample set for both models.
In the case of the best model (two classes, first derivative data),
an overall correct classification rate of 92% was achieved, with
90.9% of honey samples and 92.7% of the adulterated samples
correctly classified. The kNN classification technique does show
discrimination based on the F:G ratio. This is demonstrated by
the fact that 100% of samples adulterated with the 2.3 F:G
adulterant solution were detected as nonhoneys. This did not
occur with PLS regression. The results were not as accurate
for the 0.7 F:G solution as compared to the 2.3 F:G solution
due to the larger variation of glucose concentration in honey as
compared to that of fructose and the similarity between the
maltose and the glucose spectra. These factors reduce the
accuracy of identification of this adulterant, and in all of the
predictions, some samples adulterated were misclassified;
however, this occurred only at the lowest level (7%). As a
general screening technique using models with many different

Figure 7. Plot of predicted vs measured values for the adulteration level
with an adulterant solution of F:G ratio 0.7:1.0.

Figure 8. Plot of predicted vs measured values for the adulteration level
with an adulterant solution of F:G ratio 1.2:1.0.

Figure 9. Plot of predicted vs measured values for the adulteration level
with an adulterant solution of F:G ratio 2.3:1.0.

Table 3. Percentage Correct Classification of Prediction Sample Sets
Using kNN with Sets Grouped into Two Classes of Honey and
Nonhoney

data pretreatment

sample groups
normalized

only
normalized

1st derivative
normalized

2nd derivative

odd-numbered data seta
adulterated honey 85.5 92.7 92.7
unadulterated honey 92.0 88.0 86.0
k 9 9 7

even-numbered data setb
adulterated honey 90.9 92.7 90.9
unadulterated honey 91.8 93.9 85.7
k 8 3 3

averaged values
adulterated at 7% 74.0 83.6 80.8
adulterated at 14% 91.7 94.4 94.4
adulterated at 21% 98.7 100 100
adulterated honey 88.2 92.7 91.8
unadulterated honey 91.9 90.9 85.9
all samples 89.3 92.2 90.0

a Calibration models developed on even-numbered data set. b Calibration models
developed on odd-numbered data set.
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adulterants, this method may have more value than the regres-
sion methods as no knowledge of the adulterant is necessary
and it can also be used to identify and quantify the adulterant.
However, when searching for one specific adulterant, PLS
regression produces better results.

Conclusion. In this work, we have shown that it is possible
to distinguish infrared spectra of honey from those of honey
samples adulterated with sugar solutions. Two complementary
techniques have been described. The application of PLS
regression has shown more sensitivity to the minor components
in honey, and kNN has shown the ability to distinguish samples
adulterated at low levels with solutions with different sugar
composition from that of honey, such as medium invert syrups
and dextrose syrups. MIR spectroscopy has the potential to be
used as a rapid screening technique for the identification of
adulterated honey samples and is likely to be sensitive to a broad
range of sugar syrups.

Future work will be aimed at identifying the limits of this
technique. Fully inverted syrups and high fructose corn syrups
will be examined, and the combination of both MIR and NIR
spectra will be used to identify samples.

ABBREVIATIONS USED

ATR, attenuated total reflectance; F, fructose; FTIR, Fourier
transform infrared; G, glucose; GC, gas chromatography; HPLC,
high-performance liquid chromatography; kNN, k nearest
neighbors; MIR, midinfrared; NIR, near-infrared; NMR, nuclear
magnetic resonance; PLS, partial least squares; SEP, standard
error of prediction.
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Table 4. Percentage Correct Classification of Prediction Sample Sets
Using kNN with Sets Grouped into Four Classes Related to Level of
Adulteration

data pretreatment

sample groups
normalized

only
normalized

1st derivative
normalized

2nd derivative

odd-numbered data seta
adulterated honey 80.9 87.3 85.5
unadulterated honey 100 94.0 92.0
k 8 4 4

even-numbered data setb
adulterated honey 87.3 90.9 89.1
unadulterated honey 93.9 93.9 89.8
k 1 3 4

averaged values
adulterated at 7% 65.8 74.0 72.6
adulterated at 14% 86.1 93.1 90.3
adulterated at 21% 97.3 100 98.7
adulterated honey 84.1 89.1 87.3
unadulterated honey 97.0 93.9 90.9
all samples 88.1 90.6 88.4

a Calibration models developed on even-numbered data set. b Calibration models
developed on odd-numbered data set.

Table 5. Percentage Correct Classification of Prediction Sample Sets
Using kNN with Sets Grouped into Four Classes Related to Adulterant
Solution Added

data pretreatment

sample groups
normalized

only
normalized

1st derivative
normalized

2nd derivative

odd-numbered data seta
adulterated honey 86.4 87.3 89.1
unadulterated honey 94.0 94.0 92.0
k 3 10 6

even-numbered data setb
adulterated honey 88.2 90.0 90.0
unadulterated honey 93.9 93.9 85.7
k 4 3 3

averaged values
adulterated at 7% 74.0 74.0 74.0
adulterated at 14% 87.5 91.7 94.4
adulterated at 21% 100 100 100
adulterated honey 87.3 88.6 89.5
unadulterated honey 93.9 93.9 88.9
all samples 89.3 90.3 89.3

a Calibration models developed on even-numbered data set. b Calibration models
developed on odd-numbered data set.
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